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Abstract

Motivated by the need to describe bear-bull market regime switch-
ing in stock prices, we introduce and study a stochastic process in con-
tinuous time with two regimes, threshold and delay, given by a stochas-
tic differential equation. When the difference between the regimes is
simply given by different set of real valued parameters for the drift
and diffusion coefficients, changes between regimes depending only on
these parameters, we show that if the delay is known there are con-
sistent estimators for the threshold as long we know how to classify a
given observation of the process as belonging to one of the two regimes.
When the drift and diffusion coefficients are of geometric Brownian mo-
tion type we obtain a model with parameters that can be estimated in
a satisfactory way, a model that allows to differentiate regimes in some
of the NYSE 21 stocks analyzed and also, that gives very satisfactory
results when compared to the usual Black-Scholes model for pricing
call options.
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